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ABSTRACT
A wide range of alloys is being evaluated for use in a new generation of seawater
valves for the U.S. Navy. This new generation of valves is being developed to reduce
valve life cycle costs and to ensure materials compatibility with advanced seawater
piping materials such as commercially pure titanium. Part of the evaluation includes
assessing the corrosion performance of candidate valve materials. Crevice corrosion
performance is of particular interest since valves are connected to shipboard piping

systems with flanges and since valves contain numerous internal crevices.

Crevice corrosion tests were performed in constant temperature, natural
seawater under both quiescent and flowing conditions. Bronze, copper-nickel, and
nickel-copper alloys, which are currently used in Navy valves, were used as standards
by which the performance of stainless steel, nickel-base, titanium, and cobalt alloys
could be measured. No crevice corrosion was observed on any of the titanium or cobalt
alloys tested while the stainless steel and nickel-base alloys ranged from fully resistant
to highly susceptible. Wrought alloys were typically more resistant to crevice corrosion

than their cast equivalents.

ADMINISTRATIVE INFORMATION

This work was performed under the Future Naval Capabilities Option sponsored
by the Office of Naval Research (ONR). The technical points of contact at ONR during
the course of this work have been CMDR Michael Kiley, Dr. A. John Sedriks, and Mr.
David Thurston. The work was performed in the Marine Corrosion Branch (Code 613)
of the Naval Surface Warfare Center, Carderock Division (NSWCCD). Funding for the
program was managed under work unit numbers 1-6130-383 and 1-6130-394.
Supervision was provided by Mr. Robert Ferrara, NSWCCD Code 613.

INTRODUCTION

Seawater piping systems and their associated components (pumps, valves, etc.)
on Navy surface ships suffer from relatively high failure rates in service. The costs
associated with seawater valves alone have been identified as a significant driver in the
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overall maintenance budgets of Navy surface ships. To reducé seawater valve life
cycle costs, passive film forming alloys are being considered as alternatives to current
valve materials (typically bronze and nickel-copper alloy 400). These passive film-
forming materials have increased corrosion resistance to most forms of corrosion as
well as galvanic compatibility with titanium. However, these alloys may also be
susceptible to crevice corrosion. In order to assist in the selection of materials for new
valves, a broad range of alloys was evaluated in crevice corrosion tests in quiescent

and flowing natural seawater. Results of these tests are reported herein.

MATERIALS

Both wrought and cast alloys were evaluated for seawater crevice corrosion
resistance. Nominal compositions and mechanical properties of the alloys tested are
found in Tables 1-3. Materials currently used in Navy seawater valves, both as body
materials and as internal components (stem and trim) were used as controls in the
tests. These materials include bronze, copper-nickel (Cu-Ni), and nickel-copper (Ni-Cu)
alloys. -In addition, stainless steels (austenitic, superaustenitic, and duplex), titanium
alloys, cobalt alloys, and nickel alloys (nickel-chromium-molybdenum (Ni-Cr-Mo)) were
evaluated. With the exception of the cast Alloy 59, which was obtained as a keel block,
all castings were obtained in the form of % in. (6.35 mm) thick investment castings.
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EXPERIMENTAL PROCEDURE
Quiescent Seawater Testing

Crevice corrosion specimen assemblies were immersed in constant temperature
85 + 5 °F (29 + 3 °C), quiescent, filtered natural seawater for a period of 180 days. The
specimen assemblies consisted of two non-metallic disks attached to a 4 in. X 6 in. x
nominally % in. thick (10.2 cm x 15.2 cm x 0.6 cm) plate of the alloy being investigated,
with crevices formed either by 1/8-in. (0.3 cm) thick gasket material (cloth inserted
rubber per HH-P-151) or polytetrafluoroethylene (PTFE) with a specific gravity of 2.15
(Figures 1 and 2). Generally, rubber gasket material was used to form crevices on cast
materials anticipated for valve bodies. This configuration replicated flange connections
or valve bonnet connections. PTFE was generally used to form crevices on wrought
materials. This configuration was intended to replicate crevices formed by “soft” seats
on valve internal components.

Duplicate crevice assemblies were tested for each alloy. Each specimen was
prepared with either a smooth (surface ground to 20 to 59 pin (0.5 to 1.5 um)) or
phonographic (500 to 1000 pin (12.7 to 25.4 um), 30 to 80 serrations of uniform depth
per inch of face width) surface finish within the area shown in Figure 1. All of the alloys
were evaluated with smooth, surface ground finishes; phonographic finishes were
additionally applied to specimens of M Bronze, 90/10 Cu-Ni, 70/30 Cu-Ni, Cast CF3M,
and Cast CW6MC.

Prior to immersion in seawater, all specimens were degreased with acetone,
brushed with a detergent-pumice mixture, water rinsed, and finally degreased with fresh
acetone. For the anodized commercially pure titanium (CP Ti) specimens, the cleaning
procedure was performed prior to anodizing; afterward, specimens were only acetone
degreased. Anodizing was applied to the CP Ti specimens per AMS 2488C.

The crevice assemblies were tightened to a torque level of 75 in-lbs (0.42 N-m)
and immersed in seawater. Seawater was continuously provided to the test tanks
during the test period at a rate of approximately 0.2 to 0.3 gal./min. (0.75 to 1.13 I/min.),
equating to about 3.5 complete changes of seawater daily. Copper-based alloys were
tested in a tank separated from other alloys (Alloy 400 was tested with the copper-base
alloys). After testing, corroded specimens were acid cleaned in accordance with ASTM




G1 to remove adhered corrosion products. Resistant specimehs were scrubbed with a
detergent brush to remove accumulated biofilms. Susceptibility to crevice corrosion
was characterized in terms of the number of initiated sites and maximum depth of
attack. The depth of attack measurements were made using a needlepoint dial depth

gauge.

Flowing Seawater Testing

In these tests, seawater was pumped through a series of cells consisting of 4-6
plate specimens containing a 2-in. (5.1 cm) diameter hole sandwiched between non-
metallic crevice formers and flanged titanium spool pieces (Figures 3 and 4). Cells
were assembled by placing the plate specimens over a centering device and applying a
200 psi (1.38 MPa) preload to the flange faces using a hydraulic press. The flange bolts
were then torqued to 25 ft-Ib (3.46 kg-m). This procedure was used in an attempt to
“produce consistent crevice tightness while also ensuring leak tight connections. The
specimens were electrically isolated from the titanium spool pieces. Each specimen
was 4 in. x 4 in. x nominally Y in. thick (10.2 cm x 10.2 cm x 0.6 cm) and contained a 2
in. (5.1 cm) diameter center bore and a 3 in. (7.6 cm) outer diameter crevice area. Like
the quiescent seawater tests, rubber gasket material was generally used as a crevice
former on materials anticipated for use as valve bodies while PTFE was generally used
to form crevices on alloys anticipated as trim materials. The surface ground and
phonographic surface finishes used in the flowing seawater tests were the same as
those used in the quiescent tests. Duplicate specimens per alloy condition were
evaluated. All alloys in the quiescent seawater tests except CP Ti, Ti-6Al-4V, and 90/10
Cu-Ni were included in these flowing seawater tests. Specimens were exposed to
filtered, natural seawater maintained at a constant 85 + 5 °F (29 + 3 °C) temperature
and flowing at a velocity of 6 ft/sec (1.8 m/sec) for a period of 180 days. Prior to testing,
all specimens and titanium components were detergent/pumice scrubbed with a bristle
brush, then water rinsed and degreased with acetone. Crevice corrosion resistance of
the alloys in flowing seawater was assessed in terms of mass loss, number of initiated

crevice sites, and maximum depth of attack.



RESULTS

Quiescent and flowing seawater crevice corrosion results are provided in Tables
4-9. For each alloy class, results are reported in terms of the number of initiated sites
and the maximum depth of attack for duplicate specimens. For the alloys that showed
susceptibility to crevice corrosion, the time to initiation (based on visual inspection) was
rapid, affecting most materials within the first week of testing. The only exceptions to
this were wrought alloys 625, 70/30 Cu-Ni, 718, and 625 Plus and cast alloys CX2MW,
CW6MC, and 70/30 Cu-Ni, which initiated crevice attack within the first month of testing.

Quiescent Seawater Testing

Bronze, Copper-Nickel, and Nickel-Copper Alloys

Crevice corrosion results for these alloys are found in Table 4. All of the bronze,
copper-nickel, and nickel-copper alloys exhibited crevice-related corrosion. In
comparing the alloys based on the maximum depth of attack (Figure 5), the top
performers in order from most-to-least resistant are wrought 70/30 Cu-Ni (surface
ground), Cast 70/30 Cu-Ni (phonographic finish), M Bronze (phonographic finish), and

M Bronze (surface ground).

Crevice attack of the M Bronze, Ni Al Bronze, and 90/10 Cu-Ni specimens was
concentrated immediately adjacent to the crevice, which is common for copper alloys1'2
(Figure 6). Alloy 400, Alloy K500, and cast M35 all exhibited light corrosion within the
crevice and more significant attack adjacent to the crevice former. For Alloys 400 and
K500, gravity influenced the extent of crevice corrosion well beyond the crevice sites.
These alloys also exhibited pitting on the boldly exposed surfaces (outside the
machined area), with more numerous but smaller pits present on the Alloy 400
specimens than on Alloy K500. Pit depths ranged from 0.003 in. (0.07 to 0.08 mm) for -
Alloy 400 and 0.002 to 0.004 in. (0.04 to 0.09 mm) for Alloy K-500. Pitting of Alloy 400
and K500 in quiescent or low velocity seawater is typical®. Cast M35 also experienced
localized corrosion on the boldly exposed surfaces. Figure 7 includes representative
photographs highlighting the variation in corrosion present on Alloy 400, Alloy K500,
and cast M35. Wrought 70/30 Cu-Ni exhibited minimal corrosion both at and adjacent
to the crevice mouth; a greater degree of crevice corrosion was found on the cast 70/30




Cu-Ni specimens as shown in Figure 8. For the three alloys where both surface ground
and phonographic finishes were evaluated (M Bronze, cast 70/30 Cu-Ni, and 90/10 Cu-
Ni), specimens with the phonographic finish exhibited slightly increased crevice
corrosion resistance as compared to the corresponding surface ground specimens.
Figure 9 highlights the difference in surface finish for the cast 70/30 Cu-Ni specimens.
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Stainless Steels

Crevice corrasion results for the stainless alloys in quiescent seawater are
provided in Table 5. Only one stainless alloy, superaustenitic 654 SMO, was fully
resistant to crevice corrosion in the 180-day test. Another superaustenitic, SCF-23,
ranked right below the 654 SMO in terms of maximum depth of attack (Figure 10). The
SCF-23 specimens initiated crevice corrosion on only 2 of 4 crevice sites. The
remaining stainless steels displayed significantly increased crevice corrosion. Although
direct comparison is difficult due to the different crevice formers used in the tests, all of
the cast alloys (rubber gasket crevice formers) had greater susceptibility than their
wrought counterparts (PTFE crevice formers) based on maximum depth of attack
(Figure 10). All crevice corrosion observed on stainless steels occurred under the
crevice former. Figure 11 shows representative photographs of the varied attack
present among the stainless steels tested, while Figure 12 exhibits the difference in
crevice corrosion resistance between wrought AL6XN and its cast counterpart,
CN3MN.

Titanium Alloys
The titanium alloy results are also found in Table 5. All of the titanium alloys

were fully resistant to crevice corrosion. No evidence of crevice corrosion was found
under the rubber gasket or PTFE crevice formers, nor was there any corrosion of the
boldly exposed surfaces on the Ti-45Nb, Ti-6Al-4V, or CP Ti specimens with and
without anodizing (Figure 13).
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Nickel Alloys
Crevice corrosion data for the nickel alloys under quiescent conditions are found

in Table 6. Numerous alloys in this series were fully resistant to crevice corrosion,
including wrought alloys C22, 686, 59, and C2000 and cast Alloy 59. Three other
nickel alloys exhibited an increased susceptibility in comparison with the fully resistant
alloys but were markedly improved compared to the remaining cast nickel alloys tested
(Figure 14). These materials are wrought Alloys C276 and 625, and Alloy 625 Plus. In
all cases where both cast and wrought versions of the same alloy were tested, the
wrought materials consistently performed better than the castings. Again, this result
may have been influenced by the different crevicé formers used for the wrought and
cast alloys. Representative photographs of cast and wrought nickel-base alloys are
found in Figures 15 and 16. Cast CWBMC, the only nickel alloy where both surface
ground and phonographic finishes were evaluated, showed slightly improved resistance
in the phonographic condition (Figure 17). Similar to the stainless steels, crevice

corrosion of the nickel base alloys occurred under the crevice former.

Cobalt Alloys
The two cobalt alloys, Ultimet and Haynes 25, displayed full resistance to

crevice corrosion in quiescent seawater (Table 6). No attack was observed under the

PTFE crevice formers or on the boldly exposed surfaces of any of these specimens.

13




vi

0 0 0 0 punoig adeung 341d jubnoipy | G seuheH
0 0 0 0 punolg) aseung 3J41d wbnoapp jswnin
(81'e)szi'o Z (1972) €0L°0 Z punolg adeung 3d1d Jybnoim 526 Aolly
(9¥°0) 8100 | (81°1) 9¥0°0 Z punolg adeng 341d JybnoJp g1L Aoy
shid
(££0)S100 Z (ev'0) 2100 Z punols) adeung 341d 1yBnoJp 5z9 Aoy
0 0 0 0 punolg) aseung J41d ybnoupn 00022 Aojly
0 0 0 0 punoic) eoeung | 19yses) Jaqany }sed 66 Aol
0 0 0 0 punolg) aoeung 341d wbnoipn 66 Aoliv
0 0 0 0 punolc) ageunsg 3J41d WBNoIA 989 Aojiy
(86°0) 6£0°0 } 0 0 punols) 8oeung | 189yse Jaqgny }sed MINZXO
0 0 0 0 puUNoIS) 89euNg 341d bBnoip 220 folly
(89'2) 901°0 Z (eg2)1LL0 | punolg 80epNg | 1@)se9 Jaqgqny }sed MWZLMD
(€1°0) S00°0 L (01°0) ¥00°0 L punoig) adeung 341d bnoiwm | 9220 Aoy
(99'1) 900 L (€5°0) 1200 | olydelBouoyd
(020) 8200 } (12°2) 2800 Z punolg adeung | 1aysen Jaqany }seQ OWIMO
(¥0°0) 200°0 Z (81°0) 2000 L punois) adepung 341d JubnoIp Gz9 Aoy
(ww) -ui (z ‘xew) (wwi) -ur (z ‘xew)
yoepy sajIs yoeny sajIs
Jo yydaq "xey | pajeniu] | jo yydaQ ‘xepy | pajeniuj ysiurd JeuLiod uopipuo)
Jo# Jo# 99BLING 92IABIY) 92IABID) jeuajeny Aojy

g uswidads

v uauwisads

SAO||V J1EQOD pue |930IN J0} S}iNSay UOIS01I0T) 92IABID) 19)eMeag Jusosalny "9 a|qe




Flowing Seawater Testing

Bronze, Copper-Nickel, and Nickel-Copper Alloys
Crevice corrosion results for the bronze, copper-nickel, and nickel-copper alloys

in flowing seawater conditions are found in Table 7. Specimen mass loss
measurements are included with this data since corrosion was noted in areas other than
within the crevice, including both the interior bore surfaces and on the boldly exposed
surfaces outside the machined crevice area. Corrosion in the areas adjacent to the
crevice was not unexpected since localized corrosion of copper allpys is typically
present outside the crevice due to metal-ion concentration cell effects’. Based on the
mass loss measurements, the best performing alloys were the cast and wrought 70/30
Cu-Ni.

The M Bronze specimens did not exhibit corrosion under the rubber gasket
crevice formers. However, one of the two specimens did display cbrrosion on the boldly
exposed surfaces outside the machined area. The Ni Al Bronze specimens showed a
slight degree of attack adjacent to the gasket but within the machined area, and
corrosion on the boldly exposed surfaces adjacent to the machined area was also
evident.

The extent of mass loss for the M Bronze specimens was significantly less than
for the Ni Al Bronze. The majority of the attack on the Ni Al Bronze and M Bronze
specimens was within the bore surfaces, which was expected on these copper alloys
due to the close proximity of the crevice area and the fact that the bore surfaces are
anodic to the crevice area. Like one of the M Bronze specimens, cast M35 exhibited
corrosion on the boldly exposed surfaces outside the machined area and no corrosion
under the rubber gasket (Figure 18). Cast M35 additionally exhibited substantial pitting
of the bore surfaces. The excessive mass loss reported for M35 Specimen B was
presumably due to a dead short between the specimen and the titanium piping that was
suspected based on corrosion potential measurements after 6 weeks’ exposure. The
mass loss reported for M35 Specimen A was similar to the average mass loss on the Ni
Al Bronze specimens. Figure 19 depicts the corrosion present on the interior bore

surfaces of cast Ni Al Bronze and M35.

15



Crevice corrosion initiated under the PTFE at all four crevice sites on the wrought
Alloy 400 specimens (Figure 18). Localized attack was also present on the Alloy 400
bore surfaces. The average mass loss for the cast and wrought 70/30 Cu-Ni specimens
was similar, but the occurrence of localized corrosion differed. The wrought 70/30 Cu-
Ni specimens exhibited attack under the crevice, while the cast specimens showed

slight corrosion immediately adjacent to the crevice former.
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Stainless Steels
Crevice corrosion results for the stainless steels in flowing seawater

conditions are provided in Table 8. Like the quiescent seawater data, these results
show that wrought 654 SMO was the only stainless alloy that was fully resistant after
the 180-day test. Except for cast CN3MN and wrought Zeron 100, the remaining
stainless steels each initiated crevice corrosion at all four crevice sites. Only one
crevice site initiated on CN3MN, yet the depth of attack was significant (0.025 in.
(0.63 mm)). Asin the case of quiescent seawater, the cast alloys had lower crevice

corrosion resistance than their wrought equivalents. In comparing the maximum
depth of attack data for the stainless alloys in quiescent and flowing seawater
(Figure 10), it is apparent that flowing seawater was a significantly less severe
environment than quiescent seawater (the exception was CF3M with the
phonographic finish). This is presumably due to differences in the “crevice area
ratio”, i.e. the ratio between the boldly exposed surface area and the area shielded
by the crevice former. In quiet seawater, the crevice area ratio was 7:1 while in
flowing seawater, the crevice area ratio was 1:5. Representative photographs
showing the range of crevice corrosion present on three stainless steels are found in
Figure 20, while Figure 21 highlights the differences in crevice corrosion between
wrought 254 SMO and its cast counterpart, CK3MCuN.

Titanium Alloys
Ti-45Nb was the only titanium alloy included in the flowing seawater testing
(Table 8). As in the quiescent seawater tests, Ti-45Nb was fully resistant. There

was no evidence of crevice corrosion at any of the four crevice sites or on the boldly
exposed surfaces of these specimens. It should also be noted that no crevice
corrosion was observed on the flanged faces of the CP Ti spool pieces used in the

specimen assemblies.
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Nickel Alloys
Numerous nickel! alloys remained fully resistant after 180 days in flowing

seawater (Table' 9). These include wrought Alloys C22, 686, C2000, and C276 and
cast alloys 59 and CW12MW. In comparing this list to the fully resistant nickel alloys
in quiescent seawater, three differences are noted. Wrought Alloy 59 displayed
minimal crevice corrosion (<0.0004 in. (<0.01 mm)) at two sites in flowing seawater
yet was fully resistant in quiescent conditions. Wrought Alloy C276 was fully
resistant in flowing seawater, but exhibited crevice corrosion at 2 of 4 sites with a
maximum depth of attack of 0.0051 in. (0.13 mm) in quiescent seawater. The most
significant difference in performance was found for Cast CW12MW. In quiescent
seawater, crevice corrosion was present on 3 out of 4 sites and penetrated to a
maximum attack depth of 0.112 in. (2.83 mm), as shown in Table 6. This is in stark
contrast to the flowing seawater results, which showed full crevice corrosion
resistance on both CW12MW specimens. The surface condition of the specimens
was different (surface ground in quiescent vs. phonographic in flowing), which could
have affected the results but most likely the marked differences were attributable to
either casting defects and/or chemical segregation. Metallographic analysis is
required to delineate the reasons for the differing results.

The remaining nickel alloys all showed reduced resistance to crevice
corrosion in flowing conditions. Wrought Alloy 625 exhibited minimal corrosion
(<0.0004 in. (<0.01 mm)) at all four crevice sites, while cast CW6MC displayed
corrosion with a maximum depth of attack of 0.0047 in. (0.12 mm) on one of two
specimens. This crevice corrosion is suspect, however, because the specimen was
found to be dead shorted to the titanium piping after 6 weeks’ seawater exposure.
Alloy 625 is known to be susceptible to crevice attack in seawater®, and it is
unknown whether the coupling to titanium exacerbated the extent of corrosion in the
present case. Wrought Alloy 625 Plus showed slightly increased crevice attack as
compared to wrought Alloy 625, but Alloy 625 Plus ranked higher in resistance than
Alloy 925. The most substantial crevice corrosion of the nickel alloys was found on
Alloy 718. Crevice corrosion was found at 3 crevice sites and the maximum depth of
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attack was 0.0248 in. (0.63 mm). Figure 22 includes repre'sentative photographs of
the crevice specimens for wrought Alloys 718, 925, and C2000.

Very little difference was noted in the maximum depth of attack data for
flowing seawater between cast and wrought versions of the same alloy. While the
data show wrought Alloys C22 and 625 performed slightly better than their cast
counterparts (CX2MW and CW6MC, respectively) the overall depths of attack are
very low in all cases. The slight increase in susceptibility in the cast materials could
also be a result of the use of the gasket crevice formers as opposed to the PTFE
crevice formers used for the wrought alloys.

The maximum depth of attack data for the nickel alloys in flowing seawater
showed significantly better crevice corrosion resistance than in quiescent seawater.
As was stated for the stainless steels, this can be attributed to differences in the

crevice area ratios for the quiescent and flowing tests.

Cobalt Alloys
The two cobalt alloys, Haynes 25 and Ultimet, were fully resistant to crevice

corrosion in flowing conditions (Table 9 and Figure 23). There was no indication of

corrosion present on any of these specimens.
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Summary of Quiescent and Flowing Seawater Results
Bronze, Nickel-Copper, and Copper-Nickel Alloys

Al of the alloys in this group exhibited crevice corrosion in both quiescent and
flowing conditions. The localized attack was concentrated at the mouth of the crevice
formers due to metal-ion concentration effects. Additionally, some of the alloys
exhibited localized corrosion under the crevice former. These alloys include cast 70/30
Cu-Ni, M35, and alloy K500 (quiescent seawater), wrought 70/30 Cu-Ni (flowing
seawater) and alloy 400 (quiescent and flowing seawater). An evaluation of surface
finish (surface ground vs. phonographic) for M Bronze, cast 70/30 Cu-Ni, and 90/10 Cu-
Ni in quiescent seawater identified slightly increased crevice corrosion resistance for the
phonographic finish specimens.

Stainless Steels
Only one stainless alloy, superaustenitic 654 SMO, remained fully resistant in

both quiescent and flowing seawater after 180 days. Where both wrought and cast
versions of the same alloy were tested (2564 SMO and CK3MCuN, AL6XN and CN3MN,
316L and CF3M), the wrought alloys exhibited improved crevice corrosion resistance
over the cast products. This result may have been influenced by the different crevice
forme}s used to test the cast and wrought materials. The more compliant rubber gasket
material used for the cast materials can maintain a tighter crevice as corrosion
propagates than the PTFE material used for the wrought alloys. However, as recently
demonstrated for CF3M in other gasketed crevice tests, PTFE promoted more attack
than various rubber-type gaskets when applied to ground flange surfaces*. Cast CF3M,
evaluated in both surface ground and phonographic conditions, showed slightly
improved crevice resistance for the phonographic specimens in quiescent seawater.
Also, the crevice corrosion resistance of the alloys in the flowing seawater test was
significantly improved over that observed under quiescent conditions. This was
presumably due to differences in the crevice geometry and in crevice area ratios for the

specimens rather than an environmental effect.
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Titanium Alloys
Wrought Ti-45Nb was fully resistant in the quiescent and flowing seawater

testing. CP Ti (with and without anodizing) showed full resistance in quiescent

seawater. Although CP Tiwas not tested as a “specimen” under flowing conditions, no
crevice corrosion was observed on any of the 22 CP Ti flanges used to make up the
specimen assemblies. Crevices were formed on the flange specimens by both rubber
gaskets and PTFE annuli depending on the particular specimen assembly. Ti-6AI-4V

was fully resistant to crevice corrosion under quiescent conditions.

Nickel Alloys

Four nickel alloys exhibited full resistance to crevice corrosion in both quiescent
and flowing seawater. These materials include wrought Alloys C22, 686, and C2000,
and cast Alloy 59. Wrought Alloy 59 exhibited full resistance in quiescent seawater and
had less than 0.0004 in. (0.01 mm) depth of attack at 2 of 4 sites in flowing conditions.
Wrought and cast versions of nickel alloys in quiescent and flowing seawater generally
showed increased crevice corrosion resistance for the wrought alloy as compared to the
casting. Two exceptions, wrought 59/cast 59 (quiescent and flowing seawater) and
wrought C276/cast CW12MW (flowing seawater), showed no substantial difference in
resistance between the wrought and cast materials. Cast CW6MC crevice specimens
containing a phonographic finish exhibited slightly increased crevice resistance as

compared to the CW6MC surface ground specimens in quiescent seawater.
Cobalt Alloys
Both Alloy 25 and Ultimet showed full resistance to crevice corrosion in both

quiescent and flowing seawater.

CONCLUSIONS
Based on crevice corrosion tests in 85 + 5°F (29 £ 3°C) natural seawater and in

freely corroding conditions, the following are concluded:

e M Bronze, Ni Al Bronze, M35, Alloy 400, Alloy K500, 70/30 Cu-Ni, and 90/10 Cu-Ni
all exhibited susceptibility to crevice corrosion based on 180-day testing in quiescent
and/or flowing seawater. The crevice corrosion was concentrated outside the
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crevice, although some of these alloys additionally contained corrosion under the
crevice formers.

Numerous alloys were fully resistant to crevice corrosion in both quiescent and
flowing seawater, including 654 SMO, Alloy C22, Alloy 686, Cast Alloy 59, Alloy
C2000, Ti-45Nb, Ultimet, and Alloy 25. Wrought Alloy 59 was fully resistant in
quiescent seawater and exhibited minimal crevice corrosion (<0.0004 in. (<0.01
mm)) in flowing seawater.

Ti-6Al-4V and commercially pure titanium Grade 2 (with and without anodizing) were
fully resistant to crevice corrosion in quiescent seawater conditions. These alloys
were not tested in flowing seawater.

A phonographic surface finish representative of that used on valve gasketed flange
faces (500 to 1000 pin (12.7 to 25.4 pm)) resulted in a slight improvement in
quiescent seawater crevice corrosion resistance as compared to a surface ground
finish (20 to 60 win (0.5 to 1.5 pm)).

Generally, wrought alloys performed better than their cast counterparts in both
quiescent and flowing seawater conditions. This result may have been influenced by
the different crevice formers used to test the wrought and cast alloys (PTFE and
rubber gaskets, respectively) or the differences may be due to defects and/or
chemical segregation in the as-cast structures.

Crevice corrosion resistance of alloys in flowing conditions was improved as
compared to quiescent conditions. This is thought to be a result of differences in the
crevice geometry and in the “crevice area ratio”, i.e. the ratio between the boldly
exposed surface area and the area shielded by the crevice former, rather than
environmental effects. For the tests summarized herein, the crevice area ratio was

7:1 for the quiescent exposures and 1:5 for the flowing exposures.
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PVC Annulus with

/ CP Ti Backup Washers

6
(z Surface Prep.
- 3-in. Diameter
y
Gasket or PTFE r‘ 2 —> Jﬁh'ré E;s;ugh Hole
Crevice Former \ é e
(2-in OD x 1/2-in ID) N = 4{
L |
1\ 1/4-in. Nominal

i(—— Electrically Isolated
Through Bolt (CP Ti)

Figure 1. Crevice Corrosion Specimen Assembly
Used for Quiescent Exposures
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Figure 2. Representative Photograph of Specimen Assembly in Test
(Quiescent Exposure)
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Electnlly Isolated Bolts

Figure 3. Specimen Assembly for Crevice Corrosion Tests in Flowing Seawater
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Figure 4. Crevice Corrosion Test Specimen (Flowing Seawater)
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90/10 Cu-Ni

Ni Al Bronze

M Bronze

Figure 6. Cast M Bronze, Cast Ni Al Bronze, and Wrought 90/10 Cu-Ni Crevice Specimens After 180 Days

) Quiescent, Natural Seawater

85 + 5°F (29 + 3°C

n
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Cast 70/30 Cu-Ni

Wrought 70/30 Cu-Ni

Figure 8. Representative Condition of Wrought and Cast 70/30 Cu-Ni Crevice Specimens After

180 Days in 85 + 5°F (29 + 3°C) Quiescent, Natural Seawater
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Phonographic Finish

Surface Ground

Figure 9. Cast 70/30 Cu-Ni Crevice Specimens with Surface Ground and Phonograph Finishes After 180

Days in 85 + 5°F (29 + 3°C) Quiescent, Natural Seawater
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316L

SCF 23

654 SMO

Figure 11. Wrought Stainless Steel Alloys After 180 Days in 85 + 5°F (29 + 3°C) Quiescent,

Natural Seawater
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i-6Al-4V i-45Nb

CP Ti Anodized

Figure 13. Titanium Alloys After 180 Days in 85 + 5°F (29 + 3°C) Quiescent, Natural Seawater
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Alloy 400

M35

Figure 18. Cast M35 and Wrought Alloy 400 After 180 Days in 6 ft/sec (1.8 m/sec)

Flowing Natural Seawater
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Ni Al Bronze

Figure 19. Interior Bore Surfaces of Cast Ni Al Bronze and M35 After 180 Days in 6 ft/sec (1.8 m/sec)

Flowing Natural Seawater
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Figure 20. CN7M, SCF23, and 654 SMO After 180 Days in 6 ft/sec (1.8 m/sec)

Flowing Natural Seawater
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